Imatges de pàgina
PDF
EPUB

any more than he can believe that a target, such as archers are accustomed to shoot at, was painted in concentric circles by the accidental dashes of a brush in the hands of a blind man.

The regularity, then, of the solar system excludes the notion of accident in the arrangement of the orbits of the planets. There must have been an express adjustment to produce this circular character of the orbits. The velocity and direction of the motion of each planet must have been subject to some original regulation; or, as it is often expressed, the projectile force must have been accommodated to the centripetal force. This once done, the motion of each planet, taken by itself, would go on for ever still retaining its circular character, by the laws of motion.

If some original cause adjusted the orbits of the planets to their circular form and regular arrangement, we can hardly avoid including in our conception of this cause, the intention and will of a Creating Power. We shall consider this argument more fully in a succeeding chapter; only observing here, that the presiding Intelligence which has selected and combined the properties of the organic creation, so that they correspond so remarkably with the arbitrary quantities of the system of the universe, may readily be conceived also to have selected the arbitrary velocity and direction of each planet's motion, so that the adjustment should produce a close approximation to a circular motion.

We have argued here only from the regularity of the solar system; from the selection of the single symmetrical case and the rejection of all the unsymmetrical

cases.

But this subject may be considered in another point of view. The system thus selected is not only regular and symmetrical, but also it is, so far as we can judge, the only one which would answer the purpose of the earth, perhaps of the other planets, as the seat of animal and vegetable life. If the earth's orbit were more excentric, as it is called, if for instance the greatest and least distances were as three to one, the inequality of heat at two seasons of the year would be destructive to the existing species of living creatures. A circular, or nearly circular, orbit, is the only case in which we can have a course of seasons such as we have at present, the only case in which the climates of the northern and southern hemispheres are nearly the same; and what is more clearly important, the only case in which the character of the seasons would not vary from century to century. For if the excentricity of the earth's orbit were considerable, the difference of heat at different seasons, arising from the different distances of the sun, would be combined with the difference, now the only considerable one, which depends on the position of the earth's axis. And as by the motion of the perihelion, or place of the nearest distance of the earth to the sun, this nearest distance would fall in different ages at different parts of the year, the whole distribution of heat through the year would thus be gradually subverted. The summer and winter of the tropical year, as we have it now, being combined with the heat and cold of the anomalistic year, a period of different length, the difference of the two seasons might sometimes be neutralised altogether,

and at other times exaggerated by the accumulation of the inequalities, so as to be intolerable.

The circular form of the orbit therefore, which, from its unique character, appears to be chosen with some design, from its effects on the seasons, appears to be chosen with this design, so apparent in other parts of creation, of securing the welfare of organic life, by a steadfast and regular order of the solar influence upon the planet.

CHAP. III.-The Stability of the Solar System.

THERE is a consequence resulting from the actual structure of the solar system, which has been brought to light by the investigations of mathematicians concerning the cause and laws of its motions, and which has an important bearing on our argument. It appears that the arrangement which at present obtains is precisely that which is necessary to secure the stability of the system. This point we must endeavour to explain.

If each planet were to revolve round the sun without being affected by the other planets, there would be a certain degree of regularity in its motion; and this regularity would continue for ever. But it appears, by the discovery of the law of universal gravitation, that the planets do not execute their movements in this insulated and independent manner. Each of them is acted on by the attraction of all the rest. The earth is constantly drawn by Venus, by Mars, by Jupiter, bodies of various magnitudes, perpetually

changing their distances and positions with regard to the earth; the earth in return is perpetually drawing these bodies. What, in the course of time, will be the result of this mutual attraction?

All the planets are very small compared with the sun, and therefore the derangement which they produce in the motion of one of their number will be very small in the course of one revolution. But this gives us no security that the derangement may not become very large in the course of many revolutions. The cause acts perpetually, and it has the whole extent of time to work in. Is it not then easily conceivable that in the lapse of ages the derangements of the motions of the planets may accumulate, the orbits may change their form, their mutual distances may be much increased or much diminished? Is it not possible that these changes may go on without limit, and end in the complete subversion and ruin of the system?

If, for instance, the result of this mutual gravitation should be to increase considerably the excentricity of the earth's orbit, that is to make it a longer and longer oval; or to make the moon approach perpetually nearer and nearer the earth every revolution; it is easy to see that in the one case our year would change its character, as we have noticed in the last section; in the other, our satellite might finally fall to the earth, which must of course bring about a dreadful catastrophe. If the positions of the planetary orbits, with respect to that of the earth, were to change much, the planets might sometimes come very near us, and thus exaggerate the effects of their attraction beyond

calculable limits. Under such circumstances, we might have " years of unequal length, and seasons of capricious temperature, planets and moons of portentous size and aspect, glaring and disappearing at uncertain intervals;" tides like deluges, sweeping over whole continents; and, perhaps, the collision of two of the planets, and the consequent destruction of all organisation on both of them.

Nor is it, on a common examination of the history of the solar system, at all clear that there is no tendency to indefinite derangement. The fact really is, that changes are taking place in the motions of the heavenly bodies, which have gone on progressively from the first dawn of science. The excentricity of the earth's orbit has been diminishing from the earliest observations to our times. The moon has been moving quicker and quicker from the time of the first recorded eclipses, and is now in advance, by about four times her own breadth, of what her place would have been if it had not been affected by this acceleration. The obliquity of the ecliptic also is in a state of diminution, and is now about two-fifths of a degree less than it was in the time of Aristotle. Will these changes go on without limit or reaction? If so, we tend by natural causes to a termination of the present system of things: if not, by what adjustment or combination are we secured from such a tendency? Is the system stable, and if so, what is the condition on which stability depends?

The

To answer these questions is far from easy. mechanical problem which they involve is no less than

« AnteriorContinua »